NASA TECHNICAL NOTE

PR B AT A
]r}14 LelPE e

A [ P
KA SRR

nuAm

AN ‘g4v AHVHEIT HOFL

NASA TN D-4253

DETERMINATION OF STRESSES
IN ELASTIC SOLIDS USING
THREE STRESS FUNCTIONS
AND THREE EQUATIONS

by Robert E. Reed, Jr.

Ames Research Center

Moffett Field, Calif.

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION « WASHINGTON, D. C. . NOVEMBER 1967




TECH LIBRARY KAFB, NM

N O A

0130848
NASA TN D-4253

DETERMINATION OF STRESSES IN ELASTIC SOLIDS USING

THREE STRESS FUNCTIONS AND THREE EQUATIONS
By Robert E. Reed, Jr.

Ames Research Center
Moffett Field, Calif.

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

For sale by th; Cleoringhouserfor Federal Scientific and Technical Information
Springfield, Virginia 22151 — CFSTI price $3.00



DETERMINATION OF STRESSES IN ELASTIC SOLIDS USING
THREE STRESS FUNCTIONS AND THREE EQUATIONS
By Robert E. Reed, Jr.

Ames Research Center

SUMMARY

The classical equations of elasticity in terms of the stress components
are reduced to a set of three equations in terms of the three Maxwell stress
functions and arbitrary functions of integration. The sufficiency of these
equations is due to the interrelationships between the six compatibility edqua-
tions. The difficulty in choosing the arbitrary functions to fit a particular
problem accents the advantages of using the inverse method to find solutions.
A family of exact solutions is presented for stresses in a rectangular solid
with certain applied stresses on two opposite faces, workless boundary condi-
tions on two opposite faces, and the remaining two faces free of applied
stress.

INTRODUCTION

The differential equations for determining the stresses and displacements
in a three-dimensional elastic solid are well known (e.g., refs. 1-3), but
relatively few exact solutions have been found. Primarily, two methods can be
used to find these solutions. One method is to choose displacements that
satisfy the equilibrium equations and boundary conditions and the other method
is to choose stress components that satisfy the equilibrium equations, bound-
ary conditions, and compatibility equations. The choice between these two
methods will depend on the quantities desired and the type of boundary condi-
tions present. However, this report will deal only with the method of choos-
ing the stress components; and then 1t attempts to derive a simplified set of
equations from which exact solutions can be obtained. Basically, the complete
system of equations for the stress components consists of 12 unknowns and
15 equations. The unknowns are the 6 stress components and the 6 strain com-
ponents. The equations consist of 3 equilibrium, 6 stress-strain, and the
6 compatibility equations in terms of the 6 strain components which are neces-—
sary and sufficient to ensure the continuity of the displacements (for simply
connected regions) of any solid undergoing deformation. This system can be
reduced to 6 equations and 3 unknowns by defining 3 stress functions that
identically satisfy the equilibrium equations and then, with the stress-strain
relations, by introducing these stress functions into the compatibility equa-
tions. However, it is pointed out in some references (e.g., refs. 1-3) that
the 6 compatibility equations are interrelated and that, at most, 3 of the
6 are unrelated equations. That is, certain groups containing 3 compat-
1bility equations will have no equation related to the other 2, but any group



of 4 or more equations will have 1 or more equations related to the other
equations in the group (see appendix A for a discussion of the compatibility
equations). These interrelationships, and the assumption that the material is
homogeneous, isotropic, and follows Hooke'!s law, make it possible to derive a
set of 3 equations in terms of 3 unknown stress functions and some arbitrary
functions of integration. These equations, along with the boundary condi-
tions, are necessary and sufficient for determining exact solutions, but the
arbitrary functions of integration must be chosen to suit each particular
problem. Exact solutions of these equations are often difficult where a par-
ticular problem is specified. However, use of the "inverse method,” where the
arbitrary functions of integration are chosen such that solutions can be found,
will produce exact solutions to problems which may be of immediate interest in
terms of specific problems or can be used to check the validity of approximate
solutions which are based on formulations that can be used to solve a wider
range of problems.

In the following, the set of three equations is derived and an example
solution is presented and discussed. This solution represents a rectangular
solid with certain combinations of shear and normal stress applied to opposite
faces while two other faces have workless boundary conditions and the
remaining opposite faces are free of applied stress.

SYMBOLS
Ay constants of integration
a dimension in x direction
By constants of integration
b dimension in y direction
B elastic modulus
FX,Fy,FZ resultant applied forces
f,g,h,

functions of integration

i V-1

Lo %

Mx’ ,MZ resultant applied moments

P,q,R functions of body forces
Pi’Qi’Ti’Ui functions of &

U,V ,W displacements in x,y,z directions



X,¥ 52
B,7,5A

Y%y V29 Vyz
€y €y €z
01,602,063

v

£,1,¢

Oy 20550,

Txy’sz’Tyz

Wl:Wz:WS

dimensionless displacements; = , 45 and g

ol«

bedy forces

rectangular coordinates

constant parameters, A2 = 7% - BZLg
shear strains

normal strains

functions of VYi,¥2,Vs3,P,Q, and R
Poisson's ratio

dimensionless coordinates; § B % » and g

normal stress components

shear stress components

Maxwell stress functions

Subscripts
imaginary part of a complex quantity

real part of a complex guantity

HOMOGENEOUS, ISOTROPIC, LINEARLY ELASTIC MATERIALS

The equilibrium equations including the body forces are

aax+aTxy+asz+X=O)
ox Jy dz
Jo oT oT g
y Xy vz

Y=0 1
S | ox | oz ()
do, OTy, OT

vz -

3. + e + Sy +2 =0 )



Hooke's

and the

law is
1 B
ex = log - v(cy + 0y)]
e =% (g - v(iog + 0,)]
A E Yy X Z >
€, = % Lo, - v(ox + oy)]
_2(1 +v) _2(1 +v) _2(1 +v)
Ty ST § W Txe ST g xe’  TyzT T g 'yz)
compatibility equations are
Pe, e, P 3 3 3 )
€x + Sy _ Txy -0 o €x 9 <_ 7yz + Txz, + 7x?> -0
oy? ox? O0x Oy dy dz  Ox ox oy Oz
2 2 2 2
9 e, . o7e, ) 0 7V sy o > o~e, e 7y, _ 7%z, . 67X%> o
dz= 3%~ ox Oz dx dz Oy ox Jy oz
Bzey . d%e, ) 527yz 6 o%e, ) <j57yz . 7%z 57x%> .
322  dy®  dy oz dx dy dz \ Ox oy oz )

(2)

> (3)

The equilibrium equations can be satisfied by the Maxwell stress func-

=V

Ox

tions modified to account for the body forces.
(++) xx» €tc., one obtains

+

2,27 3
= +

G.V lljl;zz ~lI!3
= +

Oz = Vi,yy v,

,yy_IXdX’ Ty
:H—IYdy’ TXZ
,xx I Z dz , Tyz

Denoting 02(-.)/dx® by

(&)



Equations (4) can be substituted into equations (2) to give the strains in
terms of the stress functions. Equations (2) can then be substituted into the
compatibility equations to give six equations in terms of the three unknowns
wl, ¢2, and Ws' For convenience, the following definitions are made:

01 = WAy = VR = VR (Vg e YV P Vg ) +F
0, = VR + WY, = VR (Ve PV o Vg ) +Q (5)
0y = VY = VU, + W+ (U g Yy o+ Vg pp) +R
where
P=J’de-v<j’¥dy +j‘Zdz>
Q=f¥dy_v<j‘de+IZdz>
R=IZdz-v<dex+ijy>
and
vZ () =% (-+) +%§—2 () +§i—2 (--)

Equations (3) then become, respectively (see appendix B for details of the
derivation),

81,5y * 02 ,xx = ow
61,zz + es,xx =0 5 (6)
ez,zz + Ga’yy = OJ
and
1
€1,yz = O
0y .4z = O (1)
o =0
3,Xy
’ J




Equations (7) can*be integrated to find 61, 6,5, and 85, but these solutions
must be restricted to satisfy equations (6). Therefore, equations (7) yield

01 = fi(x,y) + gi(x,z)

Oz fE(X:Y) + hZ(Y)Z) (8)

1l

63 = ga(x,z) + ha(y,z)
and equations (6) require that
f2 =0

fl}yy + 2 XX

81,2z T 83,xx = O ) (9)

Do gz * By o = oJ

Equations (9) can be integrated to give

£.(%,5) = -[[f2(x,7) 4y 4y dy + yE5(x) + F(x)

——

gs(x,2) —Ifgl(x,z)’zz dx dx + xg,(z) + H(z) (10)

ho(y,2) = -[Thg(y,2),yy a4z Az + 2n,(y) +a(y) ]

Substituting equations (10) into equations (8) gives

Il

9, _fjfz(x’y);xx dy dy + yfa(x) + g (x,z) + F(x)W

D
1l

> —Ifhs(y,z)’yy dz dz + zh4(y) + fz(x,y) + G(y) & (1i)

D
1

= —ffgl(x,z),zz dx dx + xg,(z) + hy(y,2z) + H(Z)J

Equations (5) can be used to write equations (11) in terms of the ¢ values.
This gives the three equations which, along with the boundary conditions,
form a necessary and sufficient set for determining elasticity solutions.
These equations are



2 2 _ a2
Wiy = VI, - VR ot (Vg e t Y gy T Vs gy

= -Iffg(x,y),xx dy dy + yfa(x) + g.(x,2) + F(x)

~EYy W = VR + (Vo Uy H Y, L) @

> (12)

= -[[ns(y,2), yy dz dz + zhe(y) + fo(x,y) + G(y)

STy = TR F Wy (Vg Yy F Y, L) TR

- _Ifgl(x,z),zz dx dx + xg,(z) + hg(y,z) + H(z)J

where the right-hand sides are arbitrary functions of integration. Note that
there are no arbitrary functions of the form f(x,y,z).

Particular solutions can be found for F(x), G(y), H(z), and yfa(x),
zha (y) , %ga(2); they have the form:

Vip = 7 i = [JIF(x) + yea(x) lax ax

1
2p 1 +v

[Tle(y) + zha(y)lay ay

=
il

bap = 7o JIIH(2) + xg (2)]dz az

Il

The stresses resulting from these solutions are zero so these functions can
be disregarded. However, the solutions for fo(x,y), g,(x,2), and hy(y,z)

will yield nonzero stresses which may be necessary to satisfy the boundary

conditions of a specified problem.

COMMENTS ON POSSIBLE SOLUTIONS

General Comments

The relevant arbitrary functions (fz, g,, hs) in equations (12) can be
expanded into appropriate double Fourier series, and particular solutions can

7



be found in terms of the constants of the series. These constants would be
determined to fit a particular problem. However, these functions and the
body forces will be taken to be zero and only the homogeneous equations will
be considered. These are

7
VRV, = VR, - VR + (Vg e U gy t \1;3’22) =0

—V2W1 + VVZWé _ VZWg + (Wl,xx + Wz,yy + Wa,zz) =0 (13)
-2y, - VRy, +yvRy, + (wl’xx Ty e Y wé’zz) =0 J

Subtracting equations (13) in pairs gives

vy, = V3y
1 2 (14)
ngl = v2¢3

Therefore, any solution of equations (13) will satisfy equations (14).
This gives some indication of the type of solutions one might choose. Another

possibility is to let

Equations (13) then reduce to a single Laplace equation:
v2¥ = 0 (15)

From equations (4), it is seen that solutions to equation (15) represent the
case when the first stress invariant (o, + o, + GZ) is zero. One obvious
form of solution to equation (15) is ¥ = A 2os ax cos Bye’”, which is
similar to a solution discussed in reference 4.

The solution to equations (13)discussed here gives the stress distribution
in a rectangular solid having two opposite sides free of applied stress, two
opposite sides constrained by workless boundary conditions, and the remaining
two sides subjected to some combination of applied stress.

Solution to equations (13).- The following dimensionless coordinates will
be used:

The term v=(") is then given by

aZVZ(") = (")’gg + Li("),qn + ("),gg



The solution is chosen in the form

v, = £(e)¥(n)z(¢)
¥, = e(£)¥(n)2(¢) (16)
¥y = h(e)Y(n)2(¢)
where it is further assumed that
Y qn = -B2Y , Z,ee = 727 (17)

Letting AN = 92 - BZLg, one can separate the variables in equations (13) by
substituting equations (16). The resulting ordinary differential equations
are

(1 +v)e" + 3t - (g" + 7%g) - (a" - BRLCh) = O (18)
AZf o+ [vg" - (1 + v)BRL3g + vr®gl - (h" - BZLgh) =0 (19)
N - (g" + %) + [v(h" - B2L2n) + (1 + v)»®h] = O (20)
where f" = (d®f/dt2). Subtracting equations (19) and (20) gives
gn + ?\Zg = h" + 7\2}:1
SO
g =h + A; sin A\E + As cos AE (21)

In the following, A: and A are assumed to be zero (which would be required
later to satisfy the boundary conditions). Substituting equation (21) into
equation (19) or (20) gives f in terms of h. This relation and equa-

tion (%l; can be substituted into equation (18) to give the following equation
for hiE&):

h™ + 23%h" + A*h = 0 (22)

Equation (22) has the solution

AE -1iAg

n(e) = Bre "t + Boe M 4 poinee™ & Biidte (23)

The functions (&) and g(t) can now be found and the stresses can be
determined from equations (4).



The desired boundary conditions of two opposite surfaces that are free
of applied stress are given by:

Ox = Txy = Txz = O

Since T and Ty, are both zero when h'(¢) = 0, these six conditions give
the following four homogeneous equations:

h(0)
h'(0) =
h(1)
h'(1)

1]

(2k)

|
© O O ©

For the B values to be nonzero, A must have such a value that the determi-
nant of the coefficients in equations (24) is zero. The B values can then
be found in terms of one arbitrary constant from equations (24) and
substituted into equation (23) to give

n(e) = a®BAL(1 - £)sin A sin A& - A& sin A(L - &)] (25)

In order for the determinant to vanish, A must satisfy one of the two
equations

sin A = A (26)

The nonzero roots of equations (26) are complex and the lowest five roots of
each of equations (26) are given in table I (see, also, ref. 5).

TABLE I.- ROOTS OF sin A = XA

sin A = =A sin A = A

AR AL Mg A

k21239 2.25072 7.-49767 2.76867
10.71253 3.10314 13.89995 3.35220
17.07336 3.55108 20.23851 3.71676
23.39835 3.85880 26.55454 3.9831L
29.70811 4.09370 32.85974 k.19325

10



If equation (25) is used, but not equations (26), which would require the
* sign, the stresses obtained will be complex quantities given by

0; = N®By[(1 - €)sin A sin A& - At sin A(1 - &) 1Y(n)Z(¢) )
0; = BO{ABZLi[(l - £)sin A sin A& - AE sin A(1 - &)]

+2(BZLi - vy2)[sin A cos At - A cos A(1 - g)]}Y(n)Z(g)

o* = Boi7®A[-(1 - E)sin A sin A6 + A& sin A1 - E)]

z
#2(72 - vpRL2) [-sin A cos A& + A cos M1 - &)1} ¥(n)z(¢)

sz = NLoBolsin A sin A& + A sin A(1 - &) - A(1 - £)sin A cos At > (=1)
N2t cos M1 - &) 1Y (n)2(¢)

T;Z = NBo[sin A sin At + A sin A(1 - £) - A(L - &)sin A cos At
—A2g cos M1 - £)1¥(n)Z'(¢)

Ty = LOBO{—A(l ~ t)sin N sin A& + AZ¢ sin A(L - )

~2(1 - v)[sin A cos At — A cos A(L - g)]}Y'(n)Z'(g) )

Both the real and imaginary parts of equations (27) are solutions to the equi-
librium eguations, boundary conditions, etc., so the actual stresses can be
taken as the real parts of equations (27). When equations (26) and the
notation

7= IR T 171
B, = Br *+ iBI
Z(g) = e’),C = eng(COS 7IC' + i sin 71(;)

are used, the real stresses are

11



oy = ~xn)e R{Bp[Pa(e)cos 778 - Pa(e)sin 7ot]

-B1[P,(g)cos y1{ + Py(&)sin 7IC]}

oy = —Y(n)eng{BR[Ps(é)cos 776 - Pa(&)sin 77t

“By[Pa()cos 71t + Py(&)sin 7161}

g, = Y(n)e7RC{BR[P5(g)cos 717t - Polt)sin 7]

-By[Pg(t)cos 7-¢ + Ps(e)sin yot]
1[Po(8)cos 778 + Ps(8)sin 71¢1} 5)
- : 7RG )
Txy - LQY (T])e {BR[Q]_(&)COS 7I§ - QZ(E,)SJ_].’]. 71@]
-B1lQz(g)cos 77¢ + Qy(E)sin 7I§]}
Ty = Y(n)eyRC{BR[Qs(E)cos 716 = Qa(€)sin 74t]
_BI[Q4(§)cos 778 + Qgz(E)sin 7I§]}
(o RE .
Tyy = Lo¥' (n)e’ B {Balag(t)cos 778 - Qa(8)sin yot]
-B1l0g(8)cos 778 + Ag(t)sin yptl} )
where Pi(g), - . . , Qg(t) (defined under Definition of Functions) contain

the * sign of equations (26).

The displacements can be found by integrating the strain-displacement
equations:

The arbitrary functions resulting from the integration are taken to be zero to
satisfy the shear strain-displacement equations. The dimensionless
displacements are given by

12



a=-1 E Y Y(n)e7R§{BR[U1(§)cos 7176 - U2(E)sin y4¢] A
-BrlUz(&)cos y1¢ + Ua(g)sin 7I§]}
'6' —1

1 ; Y BZL?,I:IY dn}eng{BR[Us(ﬁ)cos 716 - Ua(e)sin 7] >
(29)

~BylUs (€ )cos 778 + Us(t)sin 7161}

W= i—%—z Y(n)eng{BR[Qs(E)COS 778 - Qe(&)sin 71tl

—BI[Qs(g)cos 716 + Qs(£)sin 7I§]} y

(Ua(t), « o « , Us(E) are defined in the next section).

The functions Py(¢), « . . , Us(E) depend on which of equations (26) is
chosen and, depending on the choice, the resulting stresses and displacements
will have different symmetry characteristics. For

sin A = A:
= = 1 .
Ox»0y5075Tyz,V,W are odd about & = 5, that is, ox(E,n,4) = -ox(l - &,n,¢)
sz’Txyfa are even about £ = %, that is, Ty, (6,1,6) = T4, (1 - &,1,8)

sin A = —A:

o=

Gx,oy,cz,TyZ,G,ﬁ are even about & =

= 1
Txz Txy, % are odd about & = 5

Since A is determined from one of equations (26) and the relation
A2 = »2 - BPIZ must be satisfied, only one of the three parameters 7y, B,
and N remains arbitrary. In the following, the parameter B and Y(n) are
chosen to satisfy boundary conditions at 1 = 0, 1. Two obvious choices are

Y = cos Bn B = nmx , n=20,L,2, . « .

v =" =T =0 at 1 = 0,1

xy = Tyz

and

13



Y = sin By B =nx, n=1,2, . « «

oy =u =W =0 at n=0,1

Since each of equations (26) contains infinitely many roots and n can
have any integer value, the stresses and displacements can be summed to give,

for example,

N YR &
o, = - 24 zJ cos Byne Rmn {BRmn[le(E)COS Y Imb - Pom(E)sin 7Imng]
m=1 n=o0

~Brmn [Pop(&)cos 7t - Pam(E)sin 71mnC]}

Two sets of arbitrary constants are available to satisfy boundary conditions
on the surface ¢ = constant, so one could specify two stress components on

£ = {, and would have to accept whatever the solution gave for the other
stress applied to the { = constant surface. The functions cos Byn are
orthogonal so a function can be easily represented in the 1 direction; but
the functions le(g), etc., are not orthogonal so it could be difficult to
approximate a specified stress in the ¢ direction. To avoid this difficulty
in the present report, the numerical work is confined to single-term solutions

given by eguations (28).

Definition of functions.- The functions that comprise equations (28) and
(29) are defined in this section. First, the constant parameters are

2 = L[R2 e a0 +02 - (P13 na))

ARMT
71

s A=A -AT s M = 2N

The functions that depend on the choice of equations (26) are

Pp(t) =F(1 - £)sin At cosh At + & sin Ag(L - £)cosh AL(1 - &)
Pr(t) =3(1 - £)cos Agt sinh Agt + & cos Ag(l - £)sinh Ag(1 - ¢)
Qp(€) = Fcos Age cosh Agt + cos Ag(l - &)cosh Ag(1 - &)
Qr(6) = £sin AgE sinh At - sin Ag(1 - &)sinh Ap(L - ¢)

14



TR(&) = xsin Agt cosh At + sin Ag(1 - €)cosh Ag(1l - &)

T1(g) = *cos Agt sinh Agé + cos Ag(1 - &£)sinh A(1 - &)

Ur(t) = 5(1 - €)cos Agt cosh Agt - & cos AR(l - &)cosh Ap(1 - &)

Up(g) = (1 - £)sin Agt sinh Azt + £ sin AR(L - £)sinh Az(1 - &)

where the sign corresponding to that of equations (26) must be used (i.e.,

- >

¥ tA = sin A). The functions appearing in equations (28) and (29) are

Pa(k)
P> (k)

Pa(t)

P, ()

Po(t)

Pg(t)

Q1(t)
Qo (t)

Qs (&)

(Ai - AZ)PR(Q) ~ 2N 2P (E)

2A2PR(E) + (A - A2)P1(8)

BPLoINIPR(E) - NPr(e)] + E{AR[(l - VL - WAl + vxlkz}QR(e)
—2{7\1[(1 - V)BZLg - V/\\l] - V‘\R?\z}QI(E)
Bﬁémﬁh@)+%£ﬂﬂl+2@qul—vmﬁi—VMJ—VMﬁ%%ﬁﬂ
+2{AR[(1 - v)BZLi - VA1l + vxIx%}QI(g)

(A3 + MaL2p% - 22)PR(E) - Aa(BRL2 + 2A1)P1(e)

se{hglha + (1 - v)BRLE] - Apho}ag(e)

2{rpna (@ - weRE] - aghelar(e)

Ao (B2 + 2h1)PR(E) + (A3 + A1FPLE - AJ)Py(e)

+2{7\I[7\1 + (l - V)BZLi] + AR?\Z}QR(E,)

+2{%R[%1 + (1 - v)EPLI] - %IKQ}QI(E)

MTR(E) - A2T(8) + (Agha - ApA2)UR(E) = (Aah1 + Agha)Ug(E)
A2TR(E) + A1T1(E) + (AA1 + ARA2)UR(E) + (MaAR =~ N AT)UT(E)
(7gh1 = 71A2)TR(E) - (771 + 7gA2)Tp(E)

+HN1(7RMR - 7T 1) - A2(AR?1 + A17R) 1URCE)

~-[A1(7RAT + 7TAR) + A2 (AR7R - A7) 1UT(E)

15



Q. (&) = (y1A1 + ypA2)TR(E) + (Ygha - 77A2)Tr(E)
+HA1(rpAR + 7gAp) * A2(oghg - 77hp) IUR(E)
+HA1(7grg - 717 1) - N2(rpAg + 7M7) 1U(E)

Qs(t) = (ygra - 77A2)PR(E) - (Ygha + 7A)P1(E) +2(L - v)(Ng7g - M71)6R(E)
-2(1 - v)(AgyT + MvR)QT(E)

Qg(€) = (7gh2 + yA1)PR(E) + (ygAa - 77A2)P(E) +2(1 - v)(77AR + 7gA1)CR(E)

+#2(1 - v) (7ghg - 77Ap)er(E)

Ux(e) = (1 - 2v)[AaTR(E) - A2T(E)] - (WA - A2Ap)UR(E) + (AaA1 + A2Ag)U(E)

Us(g) = (1 - 2v) [N2TR(E) + AaT1(E)] = (Aahr + A2AgIUR(E) - (AaAg - A2A1)UL(E)
Us(e) = NaPgr(e) - A2P1(e) +2(1 - v)[AgQR(E) - AQp(E)]
Us(€) = N2PR(E) + NaPp(E) +2(1 - v)[AQg(E) + AgQr(E)]

NUMERICAL EXAMPLES

The numerical evaluation of any of the solutions given by equations (28)
is straightforward and is easily carried out, but only the solution for the
lowest value of A and B = O,n 1s presented here. The boundary conditions
satisfied by the solutions considered are

£ = 0,1 n=0,%:
Ox=Txy—sz=o vaxy:TyZmo
= 01
o, = cos Pn[BRP5(t) - BIPs(g)]

xz ~ ©OS BnlBraz(t) - B1Q,(&)]

a
}

= -BL, sin Bn[BrAs(t) - BQe(t)]

=
|

16



Since the condition of decreasing stress with increasing =z is imposed, 71
is chosen to be negative. The other parameters are

sin A = -A
B =0,x (B =0 corresponds to plane strain)
Y(n) = cos By
L, = 0.01, 0.5, 1.0
Combinations of these parameters are calculated for the following two cases:

Case 1: BR #0, BT =0 (ox31s Oya, etc.)

Case 2: Br =0, B #0 (oxs» Oym s etc.)

For both cases, the applied stresses on the surface { = 0 can produce resul-
tant forces and moments that can be found from the following relations:

1 1 1 1 1
Fe =/;L - TXZIC:O de dn M, = _fo./; (n - §> °Z|g=o de dn
e | at d M : l< 1>
F, = - = - = it d
y j;fo yal gop 4€ 41 N fofo & - 5) 0zl d an
_ 1 1 _ 1 1 1 1
Fe = o~/;> - OZIQ:O dg dn Me “/;fc) (n—§>TXZ|§=o ‘Lo<§"§>Tyz|§=o dt dn

where
= Fx FY ¥y
Feo Fo Fe =y vy v
M M M
_ X Y Z
Mg, M-n-: Mg = abz s 22b 2 abz

and the notation is shown in
Sketch (a) sketch (a). For the given choice of
parameters, the resultants are
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FE,:FC:O’ Mn=MC=O
Py = -WL[(-1)" - 11[Bx(yrAr - 7171) - Br(77Ag + 7RAD)]
M, = “by[(-1)" - 11(BgAg - B{AT)

For plane strain (n = 0), all resultant forces and moments are zero.

The calculated stresses for cases 1 and 2 are shown in figures 1 through
12 and several linear combinations of the two cases are shown in figures 13(a)
to (d) and 14. Although some discussion of the limited numerical work is
given here, a much closer examination of the entire family of solutions
presented here would undoubtedly yield much useful information.

Discussion of Numerical Results

Some general comments should first be made about the figures. All the
stresses were calculated at the points ¢ = 0, 0.1, 0.2, 0.3, 0.4, 0.5 so
the graphs are accurate at those points and the stresses are either even or
odd extensions for 0.5 < ¢ < 1 as indicated on the graphs. Also, all the
graphs are independent of m since this coordinate is contained in the
abscissas.

For case 1, the applied stresses are shown by the { = O curves in fig-
ures 1, 3, and 5. The remaining three stress components are shown in

figures 7, 9, and 11.

For each stress component the same curve applies for B =0 and B = =
when Ly = 0.01 (Tyy = Tyy =0 as L, >0 or B =0) which means that the
stresses for P = x and Ly = 0.0l can be represented by 035 = Bij cos Bn
where o;: are the stresses for the plane strain problem given by B = 0.
In fact, very little difference is apparent up to L., ~ 0.1 (the accuracy is
determined by the smallness of BLO rather than Jjust LO). This is useful
to know since the plane strain solution to this and similar problems can be
obtained from two-dimensional theory.

The graphs show the rapid decay of all the stress components as
increases. However, oy, requires a longer distance to reduce its value to a
negligible amount because it has its maximum value at about { = 0.2 whereas
the other components have their maximum values at § = 0. At ¢ = 1 (a dis-
tance equal to the thickness a), Oy, 1s about 5 percent of its maximum
while the other components are about 1 to 2 percent of their maximum value.

A comparison of the curves for L, = 1.0 and L, = 0.01 for B = shows
that the applied stresses are similar in shape but the magnitude of each com-
ponent is larger for Ly = 1.0. Two of the remaining stresses, oy, and Txy1s
have similar shapes but Oy1 changes both its shape and magnitude. This
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shows that despite similar applied stress distributions, the internal stress
distribution may vary considerably with the thickness ratio.

The applied stresses for case 2 are shown in figures 2, 4, and 6, and the
remaining stresses are shown in figures 8, 10, and 12. The main difference
between the applied stresses of cases 1 and 2 (figs. 5 and 6) is the distri-

bution of TyZl and Tyzz' The same comments as for case 1 can be made regard-

ing the similarity between the B = 0 and B = n solutions and the decay of
stress with increasing { except for the behavior of Oxo compared to that
of 0x;- In figure 8, one sees that o has its maximum value at ¢ = O,
and the maximum value is an order of magnitude larger than that of Oxqp® This
is true for the solution B = O for which Tyza = Tyzz = 0 so the difference
in distribution of Tyz does not explain the large maximum value of Ox,-
Linear combinations of cases 1 and 2 can be formed to give a better under-
standing of what governs the behavior of ox. Considering only the solutions
for B = 0, one sees that cases 1 and 2 have the resultant forces shown in
sketch (b). The shear forces are given by the area (0 <t < 0.5) under the

| P | P

{v
(*

¢
6

Case | Case 2

Sketch (b)

curves for Ty,, and T,,, for ¢ =0 (figs. 3 and 4). The moments are caused
by o0y, as shown in figures 1 and 2. The relative value of the force and
moment can be varied by superposing cases 1 and 2; four examples are shown in
figures 13(a) to (h). The values indicated in the figures for the force and
moment are not precise since they were determined graphically. In fig-

ures 13(a) to {c) the force is kept constant but the moment decreases from a
dimensionless value of about 50 in figure 13(a) to zero in figure 13(c). The
maximum value of oy increases approximately linearly as the moment
decreases. Figure 13(d) shows the case for which the force is zero and the
moment nonzero, so figures 13(c) and (d) show the uncoupled effect of a force
or moment on the stress components regardless of the value of Lg. This
points out that it is possible even in thin plates to have large transverse
stresses near the edge of the plate, but these stresses, in agreement with
Saint Venant's principle, are contained within an edge region whose width
about equals the plate thickness. This is clearly seen in figure 1k where

ox at & = 0.5 is plotted versus (¢ for each example given by figures 13(a)
to (d). All the stresses have decreased to small fractions of their maximum
values within the distance ¢ = 1.
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CONCLUDING REMARKS

The set of six fourth-order compatibility equations in terms of the three
Maxwell stress functions has been written in the form of three second-order
equations with arbitrary functions of integration to simplify the task of
finding exact solutions by the inverse method. The solutions studied to date
are for body forces and arbitrary functions of integration being zero. The
most interesting one found 1is presented in the form of an infinite family of
solutions which gives the stresses in a rectangular solid subjected to applied
stresses on two opposite surfaces with two other opposite faces constrained
by workless boundary conditions. The remaining two surfaces are free of
applied stress. Numerical work is presented to show the characteristics of
the solutions and it is worthwhile to note that the stresses are smooth func-
tions throughout the solid which includes the edges and corners. The solu-
tions are not general enough to satisfy an arbitrary distribution of applied
stress. It is recommended that further study be devoted to investigating sums
of the solutions obtained which may describe additional useful cases.

Ames Research Center
National Aeronautics and Space Administration
Moffett Field, Calif., 94035, May 29, 1967
124-08-06-01-00-21
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APPENDIX A
DISCUSSION OF COMPATIBILITY EQUATIONS

Since the linear compatibility equations govern the small deformations of
any solid, it is worthwile to see how the relationships between the edquations
can be used without restricting the strains to any particular stress-strain
law. Reference 6 shows that if all six compatibility equations are satisfied
on the boundary of a simply connected solid, then satisfying three unrelated
compatibility equations throughout the interior of the solid is sufficient to
guarantee continuous displacements. 1In this section, conditions under which
three compatibility equations alone are sufficient will be investigated. From
the following definitions,

2 2
Ve Yy Oy (A1)
L7352 T2 T & oy

2 2 2
B 0%ey . o, i d Yz (12)
P2 = §,2 ox2 dx Oz

¢z = 5,2t 32 T dy oz (A3)
O ey d a7yz. ayxz a7xy
Dy =2 Sy 0z ox 3 Ay Y > (ak)
d3%e dy Sy Sy
_ vy _ o vz _ _’xz Xy
P = 2 55 oz Ay \ oOx oy Y > (45)
> > 5 3
€z d [(yz Txz 7xy
%6 = 2 Sx oy "z \ 3x T dy oz (6)
the six compatibility equations are then
®, =0, 92=0, 0z=0 (A7)
¢y =0 ,« @5 =0, Qg = O (a8)

The identities discussed in references 1 to 3 that interrelate equations (Al)
to (A6) are
, , Xg

Sy T3 - (89)

|
[\V]
Q| Q/
s
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dp, OPg o,
3t C 25 (A10)
aq)s % = 2 .%_ ( 11
2 T3y T2 Al1)
or an alternative form is
91 dpp dos 0
522 T 3y2 T 5x2 T dy oz (a12)
2 2 2 2
O 91 9 Pp .\ 09z 90 (113)
522 T 52 T 52 T 5% oz 3
2 2 2 2
3 3
3 D4 3 P Pa _ Ps (Alll-)

32 T oy= * 32 X dy

Since Pys Ps» and @5 are so closely related to ¢,, 92, and @z, 1t seems
possible that under certain conditions, strain components that satisfy three
compatibility equations will automatically satisfy the other three equations.
To explore this, assume that the strain components satisfy the three
compatibility equations

Pg = O (A15)

Substituting equations (Al5) into equations (A9) to (All) gives

9P, o Pz
a—z-—:O, $=O, &—=O (A16)
Integrating equations (Al6) gives
3%, %, %
- J _ Xy _
P =52 + S5x2 Sx 9y - £(x,y)
>%e d%e d=y
P2 = azzx + szz - }gi = g(x,z) (A17)
3% %, 527yz
P53 = 5,2 F Sy2 " Oy oz h(y,z) )

Equations (A17) show that the strains which satisfy equations (A8) may not
satisfy equations (A7), but the residues, at most, are the functions f, g,
and h. Different forms of the strains can be studied to see what forms can or
cannot contribute to the residue. It follows from equations (Al7) that some
forms that could contribute are
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ex = Ta(x,y) + g,(x,2)

€y = f2(x,y) + g2(y,2) > (a18)
€z = fa(x,y) + g5(y,2)

ey = Tal¥) 5 vyy = Ts(x,2) 5 0y, = fs(y,Z)J

In order to find forms that cannot contribute to the residue and, therefore,
will satisfy equations (A7), consider those strains that can be represented by
a power series of the form

[se] [oe} w
N\ kmn k. mn
€& 7 Z qxmnX ¥ Z Txy gmn¥ ¥ 2%
k,m,n=0 k,m,n=0
(o] [ee]
x
€y T z DX ymzn Yxz Z_‘ B kmnxk-ymzrl > (a19)
k,m,n=0 k,m,n=0
00 [o o]
mn
€z ~ z Clam* vz Tyz = }_‘ Tkmn® ¥ 2
k,m,n=0 k;m;rl:o J

where

1l
o]
b
i
o]
B
o]
B
1l
o]

Dl
s
s
[>18

k,

Equations (A1) to (A3) become
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[e0] (oo}
N — w
Py = zi‘ Py 24 lox ,miz ,n(mid) (mi2) + br+z ,m,n(k+) (k+2)
k,m,n=0 k,m,n=0
n
‘“k+1,m+1,n(k+1)(mj1)]Xkyn%
o0 (o]
0, = Z Py~ Z [ak ,m,n+e (041) (042) + ey pp g (k1) (k42)
k,m,n=0 k,m,n=0
(A20)
~Bra,m,aea(E4) (n41) 12"
(o] o0
T )
o ) m ) Drmae@)@ER) o ue a(m) (me)
k,m,n=0 k ,m,n=0
n
i mie,nee (BHL) (041) 1Ky J

where the indices have been changed so that terms of like exponents can be
grouped. Since the strains given by equations (A19) are assumed to satisfy
equations (A8), equations (Al6) are satisfied and can be written as

o]

nZ_:L(Pllm:ua -
my” Y@ = O ? (821)
kx~1 =0

®3kmn J

Equations (A21) must be satisfied for all values of x, y, and z so that

.. =0 k=0,1,2, . . «; m=0,1,2, « . «; n=1,2,
R =0 k=0,1,2, « « -« ; m= 21,2, « « « ; n=0,1,2,
qg =0 k=1,2, + « ¢ 3 m=0,1,2, « « « ; n = 0,l,2,

(A22)
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For equations (A7) to be satisfied, it must also be true that

=0, P =0, CPS =0 (A23)

¢
Tkmo 2kon omn

From equations (A20), it is seen that equations (A23) can be satisfied by
requiring that, for k,m,n = 0,1,2, . . .,

a8y mte o (m*L) (mi2) + byin m,o (k) (k42) - O‘k+1,m+1,o(k+l)(m+l)

]
(@]

(n+1) (n42) + eypp o, (k) (K42) = Bryy o n+, (k) (n1)

1l
O
—

(A2k)

a
k,0,n+2

bo’m,n+2(n+l)(nﬂ2) + co,m+2,n(m*l)(m*2) - 7o,m+1,n+1(m+l)(n+l) 0 )

Equations (A24) can be satisfied if the coefficients are combined so that the
sum is zero or by each coefficient a, b, . . ., 7 being zero. An example
of a strain that satisfies this latter condition would be if the strain ey
were of the form

€x = A cos x sin y sin z

which has a series expansion where = 0.

& ,m,o0 - ®k,o,n

The conclusion to be drawn from this discussion is that if the strains
are chosen so that their power series expansions exist and the coefficients
satisfy equations (A24), then equations (A8) are sufficient to guarantee that
all six compatibility equations are satisfied.

One could have assumed first that the strains satisfied equations (A7)
and then have looked for forms that would also satisfy equations (A8). By
the same procedure, equations analogous to equations (A24) can easily be
found; but since equations (Al12) to (AlL) are of second order, there are six
equations between the coefficients a, b, . . ., 7.
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APPENDIX B
DERIVATION OF EQUATIONS

Since some manipulation is required to write the compatibility equations
in the form given by equations (6) and (7), it seems appropriate to show a
detailed derivation.

By Hooke's law the strains can be found in terms of the stress functions.
Substituting equations (4) into equations (2) gives

£x = % [%:ZZ“”S;W‘IX dx -v <‘1’1:ZZ +‘4’8,xx-fY dy + Wl,yyﬂlfz,xx—fz dz>:I

(B1)

_ 2(1L + v)

Yy T T Vs, xy (B2)

The other strains are symmetric with equations (Bl) and (B2) and can be
obtained by permutation of the coordinates. The strains can be substituted
into the first compatibility equation given by

€ £ 3
R (83)

which gives

2
5 1:1]/2’22 -+ WS,W + IIISJXX - V(vzllfl) —fX dx +V<fY dy +fZ dZ>]

o2

2
+ %;5 [Wl,zz + Vg, ,xx + V3,yy - v(FU2) —L/\Y dy + v <;/ﬁX dx +b/\Z dz>] =0
(BL)
By definition,
vzwi = qIi,xx + wi,yy * llIi,zz (BS)
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Using equation (B5), one can write equation (BL4) as

2
§—2 [vvzwl - Pl - Vs + (Vz,xx + Vo,yy + Vo, z5)
oy

XdX—v(dey+dez>J+——[Vllfl+vvzllfg—Vallfg
+ (Va,xx + Vi,yy + Vs,zz) + Ydy -v <fX dx +JZdz>] (B6)

Since (9%/dy3) (¢é xx) = (BZ/BX?)(W ), etc., these terms can be inter-
changed to give the form, which is the first of equations (6). The next two

compatibility equations can be obtained by permutation of the coordinates.
The fourth equation is

- +

2
d ey e Byyz N O %z 87Xf> .
dy oz  Ox ox oy 0z

Substituting the strains gives

2

2 ["’%yzzz + Vs, yyyz - Sy oz fx dx - v <‘1’1,yzzz + Va,xxyz

32 3
S asz W Vayyys T Va0 T 35, fZ dz)]

+2(1 + V)(-Wl,xxyz + Vo, xxyz + Va,xxyz) = O

or

82
5y Sz I}ifz,zz + WB,:yy - qfl’xx + ‘lfz’x_-x + ws,x_x

—fXdX-v<V2¢l—dey—dez>:J=O (BT)

Equation (B5) can be used to reduce equation (B7) to the first of equations (6)
and the remaining equations can be obtained by permutation of the coordinates.

2
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